ANSWERS TO UNIT VI: CHEMICAL REACTIONS

- 1. (a) A system that is enclosed by an opaque box. (Light can't get in.)
 - (b) A system that is enclosed by a transparent box. (Material can't get in or out, but light can.)
 - (c) A system that is enclosed by a sound-absorbing box (transparent or opaque).
 - (d) A system that, for example, is surrounded by two boxes, one that is open at the top and one that is open at the bottom, as shown below.

- (e) A system in a container with heat-insulation. (This is not truly "closed"; see exercise 2; below.)
- 2. The only system which might be closed is the universe itself (and astronomers are still arguing about this point). In general approximately closed systems can be made; but even the best heat insulation cannot keep a liquid hot forever. The problem is making a container through which energy cannot pass.
- 3. (a) What is CONSERVED: the composition (the material is still paper); total mass and properties such as colour, volume and density
 - (b) What is NOT CONSERVED: the number of pieces present, shape
 - (c) What is CONSERVED: composition and properties such as colour and density What is NOT CONSERVED: total mass; volume, surface area, shape and number of pieces
- 4. (a) Conservation of atoms (primarily) and conservation of mass will also be violated since Fe atoms have a different mass from Cu atoms.
 - (b) Conservation of mass (15 g of reactants cannot make 16 g of products)
 - (c) Conservation of charge: total charge on left = +1; total charge on right = 0.
 - (d) No conservation laws violated.
 - (e) Conservation of atoms (different numbers of Cr's and O's on either side). Conservation of mass will also be violated as a result.
 - (f) No conservation laws violated
- 5. Only (b) is always conserved. The others occasionally may be conserved in particular reactions.
- 6. (a) Left hand side contains: 1C+4H+4O; molar mass of reactants = $1 \times 16.0 + 2 \times 32.0 = 80.0$ g Right hand side contains: 1C+4O+4H; molar mass of products = $1 \times 44.0 + 2 \times 18.0 = 80.0$ g Since left and right sides have the same number and types of atoms and the same mass, atoms and mass are conserved.
 - (b) Left hand side contains: 1 Na + 1 O + 2 H + 1 CI; molar mass of reactants = 40.0 + 36.5 = 76.5 gRight hand side contains: 1 Na + 1 Cl + 2 H + 1 O; molar mass of products = 58.5 + 18.0 = 76.5 gSince left and right sides have the same number and types of atoms and the same mass, atoms and mass are conserved.
- 7. $2 \operatorname{Sn} + \operatorname{O}_2 \longrightarrow 2 \operatorname{SnO}$
- 8. H2+Cl2 -> 2 HCl
- 9. $N_2 + 3 H_2 \longrightarrow 2 NH_3$
- 10. 2Na+2H₂O → 2NaOH+H₂
- 11. $4 NH_3 + 3 O_2 \longrightarrow 2 N_2 + 6 H_2 O$
- 12. 2 C₆H₁₄ + 19 O₂ → 12 CO₂ + 14 H₂O
- 13. 2 KNO₃ → 2 KNO₂ + O₂
- 14. CaC₂+2O₂ → Ca+2CO₂
- 15. $C_5H_{12} + 8O_2 \longrightarrow 5CO_2 + 6H_2O$
- 16. K₂SO₄ + BaCl₂ → 2 KCl + BaSO₄
- 17. $2 \text{ KOH} + \text{H}_2 \text{SO}_4 \longrightarrow \text{K}_2 \text{SO}_4 + 2 \text{H}_2 \text{O}$
- 18. $Ca(OH)_2 + 2NH_4CI \longrightarrow 2NH_3 + CaCl_2 + 2H_2O$
- 19. 5C+2SO₂ → CS₂+4CO

```
20. Mg_3N_2 + 6 H_2O \longrightarrow 3 Mg(OH)_2 + 2 NH_3
 21. V_2O_5 + 5 Ca \longrightarrow 5 CaO + 2 V
 22. 2Na<sub>2</sub>O<sub>2</sub>+2H<sub>2</sub>O → 4NaOH+O<sub>2</sub>
 23. Fe<sub>3</sub>O<sub>4</sub>+4 H<sub>2</sub> -> 3 Fe + 4 H<sub>2</sub>O
 24. Cu + 2 H_2 SO_4 \longrightarrow Cu SO_4 + 2 H_2 O + SO_2
 25. 2 AI + 3 H<sub>2</sub>SO<sub>4</sub> --- 3 H<sub>2</sub> + AI<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>
 26. 2 Si<sub>4</sub>H<sub>10</sub> + 13 O<sub>2</sub> → 8 SiO<sub>2</sub> + 10 H<sub>2</sub>O
 27. 4 NH<sub>3</sub> + O<sub>2</sub> → 2 N<sub>2</sub>H<sub>4</sub> + 2 H<sub>2</sub>O
 28. 2C_{15}H_{30} + 45O_2 \longrightarrow 30CO_2 + 30H_2O
 29. 2BN + 3F_2 \longrightarrow 2BF_3 + N_2
 30. CaSO<sub>4</sub>•2H<sub>2</sub>O + 2 SO<sub>3</sub> → CaSO<sub>4</sub> + 2 H<sub>2</sub>SO<sub>4</sub>
 31. 4 C<sub>3</sub>H<sub>7</sub>N<sub>2</sub>O<sub>7</sub> + 5 O<sub>2</sub> → 12 CO<sub>2</sub> + 14 H<sub>2</sub>O + 4 N<sub>2</sub>
 32. C_7H_{16}O_4S_2 + 11O_2 \longrightarrow 7CO_2 + 8H_2O + 2SO_2
 33. 9 Na + 4 Znl<sub>2</sub> → 8 Nal + NaZn<sub>4</sub>
 34. HBrO_3 + 5 HBr \longrightarrow 3 H_2O + 3 Br_2
 35. AI<sub>4</sub>C<sub>3</sub> + 12 H<sub>2</sub>O → 4 AI(OH)<sub>3</sub> + 3 CH<sub>4</sub>
36. 2 \text{Ca}(NO_3)_2 \cdot 3 \text{H}_2 \text{O} + 3 \text{LaC}_2 \longrightarrow 2 \text{Ca}(NO_3)_2 + 3 \text{La}(OH)_2 + 3 \text{C}_2 \text{H}_2
 37. CH_3NO_2 + 3 Cl_2 \longrightarrow CCl_3NO_2 + 3 HCl
38. Ca_3(PO_4)_2 + 3SiO_2 + 5C \longrightarrow 3CaSiO_3 + 5CO + 2P
39. Al_2C_6 + 6H_2O \longrightarrow 2Al(OH)_3 + 3C_2H_2
40. 2 \text{NaF} + \text{CaO} + \text{H}_2\text{O} \longrightarrow \text{CaF}_2 + 2 \text{NaOH}
41. 4 LiH + AlCl<sub>3</sub> → LiAlH<sub>4</sub> + 3 LiCl
42. 2CaF<sub>2</sub>+2H<sub>2</sub>SO<sub>4</sub>+SiO<sub>2</sub> → 2CaSO<sub>4</sub>+SiF<sub>4</sub>+2H<sub>2</sub>O
43. 3 CaSi<sub>2</sub> + 2 SbCl<sub>3</sub> → 6 Si + 2 Sb + 3 CaCl<sub>2</sub>
44. 2 TiO<sub>2</sub> + B<sub>4</sub>C + 3 C → 2 TiB<sub>2</sub> + 4 CO
45. 4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O
46. SiF<sub>4</sub>+8 NaOH → Na<sub>4</sub>SiO<sub>4</sub>+4 NaF+4 H<sub>2</sub>O
47. 2NH_4CI + CaO \longrightarrow 2NH_3 + CaCl_2 + H_2O
48. 4 \text{ NaPb} + 4 \text{ C}_2\text{H}_5\text{Cl} \longrightarrow \text{Pb}(\text{C}_2\text{H}_5)_4 + 3 \text{ Pb} + 4 \text{ NaCl}
49. Be<sub>2</sub>C + 4 H<sub>2</sub>O → 2 Be(OH)<sub>2</sub> + CH<sub>4</sub>
50. 4 NpF<sub>3</sub> + O<sub>2</sub> + 4 HF → 4 NpF<sub>4</sub> + 2 H<sub>2</sub>O
51. 3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}
52. 3 \text{ LiAIH}_4 + 4 \text{ BF}_3 \longrightarrow 3 \text{ LiF} + 3 \text{ AIF}_3 + 2 \text{ B}_2 \text{H}_6
53. 3 \text{ Cu} + 8 \text{ HNO}_3 \longrightarrow 3 \text{ Cu}(\text{NO}_3)_2 + 2 \text{ NO} + 4 \text{ H}_2\text{O}
54. 3 FeCl<sub>2</sub> + KNO<sub>3</sub> + 4 HCl → 3 FeCl<sub>3</sub> + NO + 2 H<sub>2</sub>O + KCl
55. 2 \text{ KMnO}_4 + 16 \text{ HBr} \longrightarrow 2 \text{ MnBr}_2 + 5 \text{ Br}_2 + 2 \text{ KBr} + 8 \text{ H}_2\text{O}
56. K_2Cr_2O_7 + 14 HCI \longrightarrow 2 KCI + 2 CrCl_3 + 7 H_2O + 3 Cl_2
57. (a) 2K + 2H_2O \longrightarrow 2KOH + H_2
                                                                          (d) 2 Cu<sub>2</sub>O + C → 4 Cu + CO<sub>2</sub>
        (b) Sr + 2H_2O \longrightarrow Sr(OH)_2 + H_2
                                                                                  (e) 2 NH_3 + H_2SO_4 \longrightarrow (NH_4)_2SO_4
        (c) 2 AI + 3 Ci_2 \longrightarrow 2 AiCi_3
58. 2 H_3PO_4(I) + 3 Ba(OH)_2(aq) \longrightarrow Ba_3(PO_4)_2(s) + 6 H_2O(I)
59. Al_2O_3(s) + 3 H_2SO_4(aq) \longrightarrow 3 H_2O(l) + Al_2(SO_4)_3(aq)
```

60. $2 \text{ NF}_3(g) + 3 \text{ H}_2(g) \longrightarrow \text{N}_2(g) + 6 \text{ HF}(g)$

61. $Na_2CO_3(s) + 2HBr(aq) \longrightarrow CO_2(g) + 2NaBr(aq) + H_2O(l)$