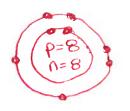
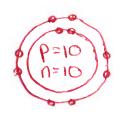
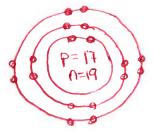
Name: Key	Block:	Date:
Chemistry 11	Introduction to Atomic Theory	Assignment
	(23 marks)	

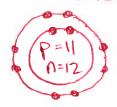

1. Complete the following table: (10 marks)

PARTICLE	ATOMIC NUMBER	MASS NUMBER	NUMBER OF PROTONS	NUMBER OF NEUTRONS	NUMBER OF ELECTRONS
⁵² ₂₄ Cr	24	52	24	28	24
²²² ₈₆ Rn	86	222	86	136	86
To Ga	31	70	31	39	31
27 Al	13	27	13	14	13
197 A 3t	79	197	79	118	76
75 A 3- 33 AS	33	75	33	42	36
209 B. 5+	83	209	83	126	78
$X^{2-} = \frac{12+}{52} Te^{2-}$	52	127	52	75	54
$X^{3+} = \frac{103}{45} R_{13+}^{3+}$	45	103	45	58	42
$X^{3-} = \frac{75}{33} A^{3-}_{5-}$	33	75	33	42	36


2. Draw Bohr diagrams for the following atoms or ions: (4 marks)

.


a. 0-16 e=8


c. Ne-20 @=10

b. Cl-35 e=18

d. Na⁺ - 23 e=10

- 3. Write the chemical symbol for: (3 marks)
 - a. An ion with 12 protons and 10 electrons.
 - b. An ion with 95 protons and 89 electrons.
 - c. An ion with 33 protons and 36 electrons.

24 Mg 2+

Amot

4. The following mixtures of isotopes are found in nature. Calculate the expected molar mass of a sample of each mixture: (3 marks)

a. ${}^{10}B = 18.8\%, {}^{11}B = 81.2\%$ $0.188 \times 10 = 1.88$ $0.812 \times 11 = 8.932$ 10.81g/mo1b. ${}^{70}Ge = 20.5\%, {}^{72}Ge = 27.4\%, {}^{73}Ge = 7.8\%, {}^{74}Ge = 36.5\%, {}^{76}Ge = 7.8\%$ $0.205 \times 10 = 14.35$ $0.2765 \times 10 = 14.35$ $0.278 \times 76 = 5.928$ $0.2744 \times 72 = 19.728$ $0.078 \times 76 = 5.928$ $10.85 \times 74 = 27.8\%, {}^{67}Zn = 4.1\%, {}^{68}Zn = 18.6\%, {}^{70}Zn = 0.6\%$ $0.489 \times 64 = 31.296$ $0.006 \times 10 = 0.42$ $0.2788 \times 66 = 18.348$ $0.041 \times 67 = 2.7447$ $0.186 \times 68 = 12.648$ Total = 65.46 g/mo1

5. Natural sources of carbon contain 98.90% C-12 (mass = 12.000000 g/mol) and 1.10% C-13 (mass = 13.003355 g/mol). What is the molar mass of the mixture of carbon isotopes, expressed to 3 decimal places? (3 marks)

0.9890 × 12.000000 = 11.868 0.0110 x 13.003355 = 0.143 12.011g/mol