	<u>Chemistry 11 – Course F</u>	eview	6.		A 0.0460 L piece of copper has a mass o in g/mL.	f 410.32 g. Calculate the density of copper
Int	troduction to Chemistry					
1.	0.0006 mm = ? μm					Answer
			7.		Give the number of significant digits in e neasurements.	ach of the following. Assume they are all
		Answer		а) 0.0023	_ d) 3.2 x 10 ⁻⁴
2.	0.054 mL = ? nL			t) 3953 000	_ e) 50020.000
				с) 1.0200 x 10 ⁵	_ f) 3450
_		Answer	8.		Perform the following calculations and r significant digits as justified by the data.	ound the answers off to the correct number of Assume all numbers are measurements.
3.	$3.5 \ \mu g/L = ? \ mg/mL$			а) 2.1500 x 0.31	f) 8.90 x $10^3 \div 4.400 x 10^{-6}$
				t	b) 0.05 + 394.7322	g) 83.00 ÷ 1.2300 x 10 ²
4.	The density of iron is 7860 g/L. Calculate the mass of a 3.	Answer 2 mL sample of iron.		с) 4.905 x $10^6 \div 4 x 10^{-2}$	_ h) 98.0076 - 2.195
				ċ	(3.33 x 9.52) + 13.983	_ i) 0.00000200 x 245.912
				e) 3.813 + 98.98 + 2.669	j) 5.802 ÷ 6.21 + 2.41 ÷ 9.2565
		Answer	9.		Round the following numbers to 2 signif	icant digits. (4 marks)
5.	Manganese has a density of 7.20 g/mL. Calculate the volume occupied by a 4.0 kg piece of manganese.	me occupied by a 4.0 kg		а) 2 000 000 000	c) 3.88945 x 10 ²⁸
				t) 106 000	_ d) 0.000 000 7895

Page 1

Answer _____

Properties of Matter

 Define: Observation, Interpretation, Qualitative, Quantitative, Data, Experiment, Hypothesis, Theory, Laws, Matter, Chemistry, Physical and Chemical Properties, Malleability, Ductility, Lustre, Viscosity and Diffusion. Review the Phases of Matter.

- 3. Concerning separation techniques...
 - a) Explain how distillation can be used to separate the substances in a solution.

b) What types of mixtures does paper chromatography work best for?

2. Draw the diagram from your notes outlining the Classification of Matter. Make sure you can define each classification.

- c) Explain how a centrifuge separates the components of a suspension.
- 4. Define a physical change -

Give some examples of physical changes.

5. Define a chemical change -

Give some examples of chemical changes.

6. Given the following graph of Temperature vs. Time for warming substance "X" which starts out as a solid, answer the questions below:

- a) During time 0.0 5.0 minutes, the added heat energy is being used to
- b) During time 5.0 15.0 minutes, the added heat energy is being used to
- c) During time 15.0 20.0 minutes, the added heat energy is being used to
- d) During time 20.0 28.0 minutes, the added heat energy is being used to
- e) The melting point of substance "X" is ______
- f) The boiling point of substance "X" is _____
- g) If a greater amount of substance "X" was used, the melting point would be

 a lower temperature
 a higher temperature
 - 3. the same temperature Answer _____
- h) What phase is substance "X" at 90°C?
- i) Explain WHY the curve levels off between 5.0 min. and 15.0 min.

Names and Formulas for Compounds

1.

2.

Wri	Write the correct formula for the following compounds:					
a)	ammonium chlorate					
b)	copper (II) sulphite					
c)	zinc carbonate tetrahydrate					
d)	nitric acid					
e)	phosphorus pentaiodide					
f)	iron (III) thiocyanate					
g)	sulphuric acid					
h)	dinitrogen tetrafluoride					
Wri	ite the correct names for the following compounds:					
a)	Mn(SO ₄) ₂					
b)	PbCrO4 [·] 6H ₂ O					
c)	As ₂ O ₃					
d)	CH3COOH	acid				
e)	Ni ₂ (C ₂ O ₄) ₃					
f)	NF ₃					
g)	(NH ₄) ₂ HPO ₄					
h)	Ba(OH)2 ^{·10H} 2O					

The Mole Concept

f) 5.00 kg of nitrogen gas = ? L (STP)

- 1. Make the following conversions, clearly showing your steps. Include proper units in all of your work and in your answer.
 - a) 133.44 grams of $PCl_5 = ?$ moles

		Angular		An	swer
b)	0.00256 moles of $Li_2Cr_2O_7 = ?$ grams	Answer		g) 0.5696 kg of $CH_{4(g)}$ = ? mL (STP)	
c)	170.24 L of NO ₂ at STP = ? moles	Answer			
				An	swer
d)	570.625 g of PCl ₃ gas = ? L (STP)	Answer	2.	The density of liquid ethanol (C_2H_3OH) is 0.790 g/m in a 35.0 mL sample of liquid ethanol. (NOTE: You NOT a gas at STP!)	L. Calculate the number of molecules CAN'T use 22.4 L/mol since this is
				А	nswer
			3.		
		Answer			
e)	1030.4 mL of C_2H_6 gas at STP = ? g			А	nswer
			4.	Calculate the density of $PCl_{3(g)}$ at STP.	
		Answer		А	nswer

Page 7

5.	a)	The density of a gas at STF	is 4.955 g/L. Calculate	the molar mass of this gas.
----	----	-----------------------------	-------------------------	-----------------------------

b) The gas is an oxide of selenium. Determine the molecular formula.

7. A compound was analyzed and the following results were obtained:

Mass of oxygen: the remainder of the sample is oxygen

Determine the mass of oxygen in the sample.

Determine the empirical formula for this compound.

Molar mass: 270.4 g/mol Mass of sample: 162.24 g Mass of potassium: 46.92 g Mass of sulphur: 38.52 g

a)

b)

Answer

%Sr,

Answer

%P,

%O

6. Find the percent composition (% by mass of each element) in the following compound: Sr₃(PO₄)₂. Show your work.

Answer

c) Determine the molecular formula for this compound.

Answer: Molecular Formula:

 123.11 g of zinc nitrate, Zn(NO₃)₂ are dissolved in enough water to form 650.0 mL of solution. Calculate the [Zn(NO₃)₂]) Include proper units in your work and in your answers.

Answer

 Calculate the mass of potassium sulphite (K₂SO₃) needed to make 800.0 mL of a 0.200 M solution of K₂SO₃. Include proper units in your work and in your answers.

Answer

 What volume of 2.50 M Li₂CO₃ would need to be evaporated in order to obtain 47.232 g of solid Li₂CO₃? Include proper units in your work and in your answers.

Answer

 150.0 mL of water are added to 400.0 mL of 0.45 M HNO₃. Calculate the final [HNO₃]. Include proper units in your work and in your answers.

Answer: Empirical Formula:

Page 9

Answer _____

12. What volume of water needs to be added to 150.0 mL of $4.00 \text{ MH}_2\text{SO}_4$ in order to bring the concentration down to 2.50 M? Include proper units in your work and in your answers.

Answer

13. Give directions on how to make 5.00 L of 0.020 M Ca(ClO)₂ using solid Ca(ClO)₂ and water. Include proper units in your work and in your answers.

Directions:

Chemical Reactions

1. Balance the following equations

Page 11

- 2. Write a balanced chemical equation for each of the following, and classify each as synthesis, decomposition, single replacement, double replacement, neutralization or combustion.
 - a) potassium sulphate is mixed with cobalt (III) nitrate
 - b) liquid propanol (C_3H_7OH) is burned in air
 - c) ammonium nitrate is decomposed into it's elements
 - d) a piece of zinc is placed in a test-tube containing a solution of silver nitrate
 - e) bromine reacts with sodium iodide
 - f) bromine reacts with aluminum
 - g) rubidium reacts with chlorine gas
 - h) hydrochloric acid reacts with strontium hydroxide

3. State whether each of the following are *exothermic* or *endothermic*.

HCl + 432 kJ \rightarrow H + Cl	Answer
$C_{12}H_{22}O_{11} + 12 O_2 \rightarrow 12CO_2 + 11H_2O$	$\Delta H = -5638 \text{ kJ}$ Answer
$H_2O_{(s)} \rightarrow H_2O_{(l)}$	Answer
$\begin{array}{c c} A + B \\ \hline \\ B \\ \hline \\ B \\ \hline \\ B \\ \hline \\ C \\ C$	
	Answer
$CD \rightarrow C + D \qquad \Delta H = 65.7 \text{ kJ}$	Answer
$E + F + 437 \text{ kJ} \rightarrow G + H$	Answer

4. Given the equation: $C_{12}H_{22}O_{11} + 12O_2 \rightarrow 12CO_2 + 11H_2O + 5638 \text{ kJ}$

a. How much heat is released during the formation of 880.0 g of CO₂?

Answer _____

b. How much heat is released during the formation of 5.6 moles of H_2O ?

Answer

c. If 179.2 L of O₂ (STP) are consumed, how much heat is released?

Answer

Page 14

Stoichiometry

d)

1. Given the following balanced equation, answer the questions following it:

 $2NF_{3(g)} + 3H_{2(g)} \rightarrow N_{2(g)} + 6HF_{(g)}$

a) If 5.5 moles of H_2 are reacted, how many moles of NF₃ will be consumed?

Answer

b) In order to produce 0.47 moles of HF, how many moles of NF_3 would be consumed?

Answer _____

Answer _____

Answer

c) If you needed to produce 180.6 g of $N_2,$ how many moles of H_2 would you need to start with?

If you completely react 17.04 g of NF_3 , what mass of HF will be produced?

2. Given the following balanced equation, answer the questions following it:

HBrO₃ + 5 HBr \rightarrow 3 H₂O_(l) + 3 Br_{2(g)}

a) If 3.56 moles of HBr are reacted, how many Litres of Br_2 will be formed at STP?

Answer

b) In order to produce 3.311×10^{24} molecules of Br₂, what mass of HBr is needed?

Answer

3. Given the following balanced chemical equation, answer the question below it.

 $MgCO_{3 (s)} + 2HCl_{(aq)} \rightarrow CO_{2 (g)} + H_2O_{(l)} + MgCl_{2(aq)}$

a) What mass of MgCO₃ will react completely with 15.0 mL of 1.5 M HCl?

Answer

b) Calculate the volume of 2.0 M HCl which would be needed to react completely with 37.935 grams of magnesium carbonate.

Answer

Page 15

4. Given the following balanced equation, answer the questions below it.

 $Ba(OH)_{2(aq)} + 2 HNO_{3(aq)} \rightarrow 2 H_2O_{(1)} + Ba(NO_3)_2$

a) In a titration, 18.20 mL of 0.300 M Ba(OH)₂ is required to react completely with a 25.0 mL sample of a solution of HNO₃. Find the [HNO₃].

In a titration, 11.06 mL of 0.200 M HNO₃ is required to react completely with

a sample of 0.250M Ba(OH)₂. Find the volume of the Ba(OH)₂ sample.

6. Given the balanced equation: $2BN + 3F_2 \rightarrow 2BF_3 + N_2$,

When 161.2 grams of BN are added to an excess of F_2 , a reaction occurs in which 326.118 grams of BF₃ are formed.

- a) Calculate the *theoretical* yield of BF₃ in grams.
- Answer

b) Calculate the *percentage* yield of BF₃.

Answer

7. When reacting NH_3 with O_2 according to the reaction:

 $4 \text{ NH}_3 + 5 \text{ O}_2 \rightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O}$

Using 163.2 grams of NH₃ with an excess of O₂ produces a 67% yield of NO.

a) Calculate the *theoretical yield* of NO in grams.

Answer

b) Calculate the *actual yield* of NO in grams.

Answer

Answer _____

Answer

5. Given the following balanced equation, answer the questions below it.

b)

 $3 \operatorname{Cu}_{(s)} + 8\operatorname{HNO}_{3(l)} \rightarrow 3 \operatorname{Cu}(\operatorname{NO}_3)_{2(aq)} + 2\operatorname{NO}_{(g)} + 4 \operatorname{H}_2 O_{(l)}$

a) If 317.5 grams of Cu are placed into 756.0 grams of HNO₃, determine which reactant is in excess.

Answer

b) If the reaction in (a) is carried out, what mass of NO will be formed?

Answer _____

Page 17

n reactant

Atoms, Periodic Table and Bonding

2. Consider the following ideas:

> Compounds are made up of molecules which are combinations of atoms

- ➢ All atoms of an element are the same
- Atoms of different elements are different
- Atoms are indivisible particles

Who came up with these ideas? ______ He called the ideas, the

_____ Theory.

3. measured the charge/mass ratio of an electron and came up with the so-called "plum pudding" model of the atom.

4. ______ devised the Scattering Experiment, which showed that all atoms had a small dense ______.

5. Bohr came up with an atomic model to explain the spectrum of _____

He said that the atom has certain ______ levels which are allowed. These levels corresponded to ______ in which electrons move. If an electron absorbs a certain photon of energy, it will jump to a ______ level. It will release this energy (in the form of ______) when it jumps back to a ______ level.

What were two limitations of Bohr's atomic model?

6. Give the number of protons, neutrons and electrons in the following:

Isotope	Protons	Neutrons	Electrons
194 Ir ³⁺			
$^{202}\text{Hg}^{2+}$			
125 Te ²⁻			
²⁶³ Sg			
$^{2}\text{H}^{+}$			

7. Give the nuclear notation of the following:

Isotope	Protons	Neutrons	Electrons
	105	157	103
	51	72	48
	33	42	36
	54	79	54
	94	150	91

8. Element "X" is composed of the following naturally occurring isotopes:

Isotope	% Abundance
⁷⁹ X	50.69
⁸¹ X	49.31

Calculate the average atomic mass of element "X" to 3 decimal places.

Element "X" is actually the real element _____.

- 9. Regions in space occupied by electrons are called _____
- The principal quantum number is given the letter _____ and refers to the ______ level.

- 11. Write the ground state electron configurations (eg. $1s^2 2s^2 2p^6$) for the following atoms or ions. You may use the core notation.
 - a) P
 - b) Mo
 - c) Se
 - d) Rb
 - e) Cl
 - f) Al³⁺
 - g) K⁺
 - h) S²⁻
- 12. In order to become stable,
 - an atom of Sr will ______ electrons and become the ion _____
 - an atom of As will ______ electrons and become the ion _____
 - an atom of Al will ______ electrons and become the ion _____
 - an atom of Se will ______ electrons and become the ion _____
 - an atom of N will ______ electrons and become the ion _____
 - an atom of I will ______ electrons and become the ion _____
 - an atom of Cs will ______ electrons and become the ion _____
 - an atom of Te will ______ electrons and become the ion _____
- 13. Circle the metalloid: Be Rb Os Ge Pb Al
- 14. Circle the most reactive element in the following: Na Mg Si Al Ar
- 15. Circle the most reactive element in the following: Na K Rb Cs Li
- 16. Circle the most reactive element in the following: Cl Br I At Ne
- 17. Circle the element with the largest atomic radius of these: Na Mg Si Al Ar
- 18. Circle the element with the largest atomic radius of these: N P As Sb Bi

- 19. Circle the element with the largest ionization energy of these: K Ca Ga As Kr 20. Circle the element with the largest ionization energy of these: C Si Ge Sn Pb 21. What is meant by ionization energy? 22. Circle the element with the largest density of these: C Si Ge Sn Pb 23. Circle the element with the largest density of these: Na K Rb Cs Li 24. Circle the element with the highest electronegativity of these: Mg Sr Ba Ra 25. Circle the element with the highest electronegativity of these: Mg Si S Cl 26. Circle the element with the highest electronegativity of these: F Cl Br I 27. What is meant by electronegativity? 28. Circle the most metallic element of these: Be Mg Ca Sr Ba 29. Circle the most metallic element of these: B Al Ga In Tl 30. Circle the most metallic element of these: Ga Ge Se Br Kr 31. In an ionic bond, electrons are a. shared equally by two atoms b. shared unequally by two atoms c. transferred from a metal to a non-metal d. transferred from a non-metal to a metal e. closer to one end of a molecule, forming a temporary dipole Answer 32. In a covalent bond, electrons are f. shared equally by two atoms g. shared unequally by two atoms h. transferred from a metal to a non-metal i. transferred from a non-metal to a metal j. closer to one end of a molecule, forming a temporary dipole Answer 33. In a polar covalent bond, electrons are k. shared equally by two atoms 1. shared unequally by two atoms
 - m. transferred from a metal to a non-metal
 - n. transferred from a non-metal to a metal
 - o. closer to one end of a molecule, forming a temporary dipole Answer_____

Page 21

- 34. In London forces, electrons are
 - p. shared equally by two atoms
 - q. shared unequally by two atoms
 - r. transferred from a metal to a non-metal
 - s. transferred from a non-metal to a metal
 - t. closer to one end of a molecule, forming a temporary dipole Answer_____
- 35. What evidence do we have that ionic bonds are very strong?
- 36.
 Write electron-dot diagrams for: MgCl₂ (ionic)
 PBr₃(covalent)
 SeF₂(covalent)
 CH₃CH₂I(covalent)

"OK, Mr. Dittmars, remember: That brain is only a temporary, so don't think too hard with it."

Remember...

Organic Chemistry and Safety are also Fair game for the Final!!

Study Hard!