Chemistry 11 - Course Review

Introduction to Chemistry

1. $0.0006 \mathrm{~mm}=? \mu \mathrm{~m}$
$0.054 \mathrm{~mL}=$? nL
Answer \qquad

Answer \qquad
3. $\quad 3.5 \mu \mathrm{~g} / \mathrm{L}=? \mathrm{mg} / \mathrm{mL}$

Answer \qquad
4. The density of iron is $7860 \mathrm{~g} / \mathrm{L}$. Calculate the mass of a 3.2 mL sample of iron.

Answer \qquad
5. Manganese has a density of $7.20 \mathrm{~g} / \mathrm{mL}$. Calculate the volume occupied by a 4.0 kg piece of manganese.
6. A 0.0460 L piece of copper has a mass of 410.32 g . Calculate the density of copper in g / mL.
\qquad
7. Give the number of significant digits in each of the following. Assume they are all measurements.
a) 0.0023 . \qquad d) 3.2×10^{-4}
\qquad
b) 3953000
e) 50020.000 \qquad
c) 1.0200×10^{5} \qquad f) 3450 .
. Perform the following calculations and round the answers off to the correct number of significant digits as justified by the data. Assume all numbers are measurements.
a) 2.1500×0.31 \qquad f) $8.90 \times 10^{3} \div 4.400 \times 10^{-6}$
\qquad
b) $0.05+394.7322$ \qquad g) $83.00 \div 1.2300 \times 10^{2}$ \qquad
c) $4.905 \times 10^{6} \div 4 \times 10^{-2}$ \qquad h) $98.0076-2.195$ \qquad
d) $(3.33 \times 9.52)+13.983$. \qquad i) $0.00000200 \times 245.912$ \qquad
e) $3.813+98.98+2.669$ \qquad j) $5.802 \div 6.21+2.41 \div 9.2565$ \qquad
9. Round the following numbers to 2 significant digits. (4 marks)
a) 2000000000 . \qquad c) 3.88945×10^{28}
\qquad
b) 106000 . \qquad d) 0.0000007895 \qquad

Properties of Matter

1. Define: Observation, Interpretation, Qualitative, Quantitative, Data, Experiment,

Hypothesis, Theory, Laws, Matter, Chemistry, Physical and Chemical Properties,
Malleability, Ductility, Lustre, Viscosity and Diffusion. Review the Phases of Matter.
3. Concerning separation techniques..
a) Explain how distillation can be used to separate the substances in a solution.
b) What types of mixtures does paper chromatography work best for?
c) Explain how a centrifuge separates the components of a suspension.
4. Define a physical change -

Give some examples of physical changes
5. Define a chemical change -

Give some examples of chemical changes
6. Given the following graph of Temperature vs. Time for warming substance " X " which starts out as a solid, answer the questions below:

a) During time $0.0-5.0$ minutes, the added heat energy is being used to
b) During time $5.0-15.0$ minutes, the added heat energy is being used to
c) During time $15.0-20.0$ minutes, the added heat energy is being used to
d) During time $20.0-28.0$ minutes, the added heat energy is being used to
e) The melting point of substance " X " is
f) The boiling point of substance " X " is \qquad
g) If a greater amount of substance " X " was used, the melting point would be 1. a lower temperature
2. a higher temperature
3. the same temperature Answer \qquad
h) What phase is substance " X " at $90^{\circ} \mathrm{C}$? \qquad
i) Explain WHY the curve levels off between 5.0 min . and 15.0 min .

Names and Formulas for Compounds

1. Write the correct formula for the following compounds:
a) ammonium chlorate .. \qquad
b) copper (II) sulphite.
c) zinc carbonate tetrahydrate. \qquad
\qquad
d) nitric acid. \qquad
\qquad
e) phosphorus pentaiodide \qquad
\qquad
f) iron (III) thiocyanate... \qquad
g) sulphuric acid.. \qquad
h) dinitrogen tetrafluoride \qquad
\qquad
2. Write the correct names for the following compounds:
a) $\mathrm{Mn}\left(\mathrm{SO}_{4}\right)_{2}$ \qquad
\qquad
b) $\mathrm{PbCrO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$............................... \qquad
c) $\mathrm{As}_{2} \mathrm{O}_{3} \ldots \ldots . ~$ \qquad
d) $\mathrm{CH}_{3} \mathrm{COOH}$ \qquad
\qquad acid
e) $\mathrm{Ni}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}$ \qquad
\qquad
f) NF_{3} \qquad
\qquad
g) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ \qquad
\qquad
h) $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}$. \qquad
3. Make the following conversions, clearly showing your steps. Include proper units in all of your work and in your answer.
a) 133.44 grams of $\mathrm{PCl}_{5}=$? moles
\qquad
b) 0.00256 moles of $\mathrm{Li}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=$? grams

Answer \qquad
c) \quad 170.24 L of NO_{2} at $\mathrm{STP}=$? moles

Answer \qquad
d) 570.625 g of $\mathrm{PCl}_{3} \mathrm{gas}=? \mathrm{~L}(\mathrm{STP})$
e) $\quad 1030.4 \mathrm{~mL}$ of $\mathrm{C}_{2} \mathrm{H}_{6}$ gas at $\mathrm{STP}=? \mathrm{~g}$
f) 5.00 kg of nitrogen gas $=?$ L (STP)

Answe \qquad
g) $\quad 0.5696 \mathrm{~kg}$ of $\mathrm{CH}_{4(\mathrm{~g})}=? \mathrm{~mL}(\mathrm{STP})$

Answer

2. The density of liquid ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is $0.790 \mathrm{~g} / \mathrm{mL}$. Calculate the number of molecule in a 35.0 mL sample of liquid ethanol. (NOTE: You CAN'T use $22.4 \mathrm{~L} / \mathrm{mol}$ since this is NOT a gas at STP!

Answer \qquad
3. A 100.0 mL sample of liquid mercury contains 6.78 moles. Calculate the density of liquid mercury from this data.

Answer \qquad
4. Calculate the density of $\mathrm{PCl}_{3(\mathrm{~g})}$ at STP.
\qquad
5. a) The density of a gas at STP is $4.955 \mathrm{~g} / \mathrm{L}$. Calculate the molar mass of this gas.
b) The gas is an oxide of selenium. Determine the molecular formula.

Answer
6. Find the percent composition (\% by mass of each element) in the following compound: $\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}$. Show your work.

Answer \qquad $\% \mathrm{Sr}$, \qquad \%P, \qquad \%O
7. A compound was analyzed and the following results were obtained:

Molar mass: $270.4 \mathrm{~g} / \mathrm{mol}$
Mass of sample: 162.24 g
Mass of potassium: 46.92 g
Mass of sulphur: 38.52 g
Mass of oxygen: the remainder of the sample is oxygen
a) Determine the mass of oxygen in the sample.

Answer \qquad
b) Determine the empirical formula for this compound.
c) Determine the molecular formula for this compound.

Answer: Molecular Formula

\qquad
8. $\quad 123.11 \mathrm{~g}$ of zinc nitrate, $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ are dissolved in enough water to form 650.0 mL of solution. Calculate the $\left.\left[\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}\right]\right)$ Include proper units in your work and in your answers.

Answe

9. Calculate the mass of potassium sulphite $\left(\mathrm{K}_{2} \mathrm{SO}_{3}\right)$ needed to make 800.0 mL of a 0.200 M solution of $\mathrm{K}_{2} \mathrm{SO}_{3}$. Include proper units in your work and in your answers.

Answer
10. What volume of $2.50 \mathrm{M} \mathrm{Li}_{2} \mathrm{CO}_{3}$ would need to be evaporated in order to obtain 47.232 g of solid $\mathrm{Li}_{2} \mathrm{CO}_{3}$? Include proper units in your work and in your answers.

Answer \qquad

1. 150.0 mL of water are added to 400.0 mL of $0.45 \mathrm{M} \mathrm{HNO}_{3}$. Calculate the final $\left[\mathrm{HNO}_{3}\right]$. Include proper units in your work and in your answers
\qquad Answer \qquad
2. What volume of water needs to be added to 150.0 mL of $4.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ in order to bring the concentration down to 2.50 M ? Include proper units in your work and in your answers.

Answer
13. Give directions on how to make 5.00 L of $0.020 \mathrm{M} \mathrm{Ca}(\mathrm{ClO})_{2}$ using solid $\mathrm{Ca}(\mathrm{ClO})_{2}$ and water. Include proper units in your work and in your answers.

Directions:

Chemical Reactions

1. Balance the following equations

2. Write a balanced chemical equation for each of the following, and classify each as synthesis, decomposition, single replacement, double replacement, neutralization or combustion.
a) potassium sulphate is mixed with cobalt (III) nitrate
b) liquid propanol $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\right)$ is burned in air
c) ammonium nitrate is decomposed into it's elements
d) a piece of zinc is placed in a test-tube containing a solution of silver nitrate
e) bromine reacts with sodium iodide
f) bromine reacts with aluminum
g) rubidium reacts with chlorine gas
h) hydrochloric acid reacts with strontium hydroxide
3. State whether each of the following are exothermic or endothermic
Answer \qquad
4. Given the equation: $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+12 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O}+5638 \mathrm{~kJ}$
a. How much heat is released during the formation of $880.0 \mathrm{~g} \mathrm{of} \mathrm{CO}_{2}$?

Answer \qquad
b. How much heat is released during the formation of 5.6 moles of $\mathrm{H}_{2} \mathrm{O}$?

Answer \qquad
c. If 179.2 L of $\mathrm{O}_{2}(\mathrm{STP})$ are consumed, how much heat is released?
\qquad

Stoichiometry

1. Given the following balanced equation, answer the questions following it:
```
2NF
```

a) If 5.5 moles of H_{2} are reacted, how many moles of NF_{3} will be consumed?

Answer \qquad
b) In order to produce 0.47 moles of HF , how many moles of NF_{3} would be consumed?

Answer \qquad
c) If you needed to produce 180.6 g of N_{2}, how many moles of H_{2} would you need to start with?

Answer \qquad
d) If you completely react 17.04 g of NF_{3}, what mass of HF will be produced?

Answer \qquad

Answer \qquad
4. Given the following balanced equation, answer the questions below it.

$$
\mathrm{Ba}(\mathrm{OH})_{2(\mathrm{aq})}+2 \mathrm{HNO}_{3(\mathrm{aq})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}
$$

a) In a titration, 18.20 mL of $0.300 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ is required to react completely with a 25.0 mL sample of a solution of HNO_{3}. Find the $\left[\mathrm{HNO}_{3}\right]$.

Answer
b) In a titration, 11.06 mL of $0.200 \mathrm{M} \mathrm{HNO}_{3}$ is required to react completely with a sample of $0.250 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$. Find the volume of the $\mathrm{Ba}(\mathrm{OH})_{2}$ sample.
Answer
\qquad
5. Given the following balanced equation, answer the questions below it.

$$
3 \mathrm{Cu}_{(\mathrm{s})}+8 \mathrm{HNO}_{3(\mathrm{l})} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{NO}_{(\mathrm{g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

a) If 317.5 grams of Cu are placed into 756.0 grams of HNO_{3}, determine which reactant is in excess.

Answer

\qquad .
b) If the reaction in (a) is carried out, what mass of NO will be formed?

Answer \qquad -
6. Given the balanced equation: $2 \mathrm{BN}+3 \mathrm{~F}_{2} \rightarrow 2 \mathrm{BF}_{3}+\mathrm{N}_{2}$,

When 161.2 grams of BN are added to an excess of F_{2}, a reaction occurs in which 326.118 grams of BF_{3} are formed.
a) Calculate the theoretical yield of BF_{3} in grams.

Answer \qquad
b) Calculate the percentage yield of BF_{3}.

Answer \qquad
7. When reacting NH_{3} with O_{2} according to the reaction:

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

Using 163.2 grams of NH_{3} with an excess of O_{2} produces a 67% yield of NO
a) Calculate the theoretical yield of NO in grams.

Answer \qquad
b) Calculate the actual yield of NO in grams.
\qquad

Atoms, Periodic Table and Bonding

2. Consider the following ideas:
> Compounds are made up of molecules which are combinations of atoms
All atoms of an element are the same
$>$ Atoms of different elements are different
$>$ Atoms are indivisible particles
Who came up with these ideas? \qquad He called the ideas, the
\qquad
3. \qquad measured the charge/mass ratio of an electron and came up with the so-called "plum pudding" model of the atom.
4.

atoms had a small dense \qquad devised the Scattering Experiment, which showed that al
5. Bohr came up with an atomic model to explain the spectrum of \qquad .

He said that the atom has certain \qquad levels which are allowed. These levels corresponded to \qquad in which electrons move. If an electron absorbs certain photon of energy, it will jump to in which electrons move level. It will release this energy (in the form of \qquad) when it jumps back to a \qquad
level.
What were two limitations of Bohr's atomic model?
6. Give the number of protons, neutrons and electrons in the following

Isotope ${ }^{194} \mathrm{Ir}^{3+}$		Protons	Neutrons
${ }^{202} \mathrm{Hg}^{2+}$			
${ }^{125} \mathrm{Te}^{2-}$			
${ }^{263} \mathrm{Sg}^{2+}$			
${ }^{2} \mathrm{H}^{+}$			

7. Give the nuclear notation of the following:

Isotope	Protons	Neutrons	Electrons
	105	157	103
	51	72	48
	33	42	36
	54	79	54
	94	150	91

8. Element " X " is composed of the following naturally occurring isotopes:

Isotope	\% Abundance
${ }^{19} \mathrm{X}$	50.69
${ }^{81} \mathrm{X}$	49.31

Calculate the average atomic mass of element " X " to 3 decimal places.

Element " X " is actually the real element \qquad .
9. Regions in space occupied by electrons are called \qquad
10. The principal quantum number is given the letter \qquad and refers to the \qquad level
\qquad -
11. Write the ground state electron configurations (eg. $1 s^{2} 2 s^{2} 2 p^{6}$) for the following atoms or ions. You may use the core notation.
a) P
b) Mo
c) Se
d) Rb
e) Cl^{-}
f) Al^{3+}
g) K^{+}
h) $\quad \mathrm{S}^{2-}$
12. In order to become stable,
an atom of Sr will \qquad
\qquad electrons and become the ion \qquad an atom of As will \qquad _ electrons and become the ion \qquad an atom of Al will \qquad _ electrons and become the ion \qquad an atom of Se wil \qquad electrons and become the ion \qquad
an atom of N will \qquad _ electrons and become the ion \qquad an atom of I will \qquad _ electrons and become the ion \qquad an atom of Cs will \qquad electrons and become the ion \qquad an atom of Te will \qquad electrons and become the ion \qquad
13. Circle the metalloid: Be Rb Os Ge Pb Al
14. Circle the most reactive element in the following: Na Mg Si Al Ar
15. Circle the most reactive element in the following: $\mathrm{Na} \mathrm{K} \quad \mathrm{Rb} \quad \mathrm{Cs} \mathrm{Li}$
16. Circle the most reactive element in the following: Cl Br I At Ne
17. Circle the element with the largest atomic radius of these: Na Mg Si Al Ar
18. Circle the element with the largest atomic radius of these: $\mathrm{N} P \mathrm{P}$ As Sb Bi
19. Circle the element with the largest ionization energy of these: K Ca Ga As Kr
20. Circle the element with the largest ionization energy of these: $\mathrm{C} \mathrm{Si}_{\mathrm{Ge}}^{\mathrm{Gn} \mathrm{Pb}}$
21. What is meant by ionization energy?
22. Circle the element with the largest density of these: $\mathrm{C} \quad \mathrm{Si}$ Ge Sn Pb
23. Circle the element with the largest density of these: $\mathrm{Na} \quad \mathrm{K} \quad \mathrm{Rb} \quad \mathrm{Cs} \quad \mathrm{Li}$
24. Circle the element with the highest electronegativity of these: $\mathrm{Mg} \operatorname{Sr} \mathrm{Ba} \mathrm{Ra}$
25. Circle the element with the highest electronegativity of these: $\mathrm{Mg} \operatorname{Si} \mathrm{S}$
26. Circle the element with the highest electronegativity of these: F Cl Br I
27. What is meant by electronegativity?
28. Circle the most metallic element of these: Be Mg Ca Cr Ba
29. Circle the most metallic element of these: B Al Ga In Tl
30. Circle the most metallic element of these: Ga Ge Se Br Kr
31. In an ionic bond, electrons are
a. shared equally by two atoms
b. shared unequally by two atoms
c. transferred from a metal to a non-metal
d. transferred from a non-metal to a metal
e. closer to one end of a molecule, forming a temporary dipole Answer
32. In a covalent bond, electrons are
f. shared equally by two atoms
g. shared unequally by two atoms
h. transferred from a metal to a non-metal
i. transferred from a non-metal to a metal
j. closer to one end of a molecule, forming a temporary dipole Answer \qquad
33. In a polar covalent bond, electrons are
k. shared equally by two atoms

1. shared unequally by two atoms
m. transferred from a metal to a non-metal
n. transferred from a non-metal to a metal
o. closer to one end of a molecule, forming a temporary dipole \qquad
2. In London forces, electrons are
p. shared equally by two atoms
q. shared unequally by two atoms
r. transferred from a metal to a non-metal
. transferred from a non-metal to a metal
t. closer to one end of a molecule, forming a temporary dipole Answer \qquad
3. What evidence do we have that ionic bonds are very strong?
4. Write electron-dot diagrams for: MgCl_{2} (ionic) $\quad \mathrm{PBr}_{3}$ (covalent)
SeF_{2} (covalent)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$ (covalent)

Remember...

Organic Chemistry and Safety are also Fair game for the Final!!

Study Hard!

